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Summary.  Factor ia l  models  commonly  used in the 
analysis  of  overall  and component  yields of  b inary  
mixtures  o f  genotypes are general ised to include mix- 
tures o f  any number  of  components  (size, m) and the 
form of  an analysis of  variance for fitting such a model  
to ter t iary  mixtures is outlined. Such a model  contains 
ma in  effects and interactions up to the mth order,  and 
is specific to the size of  mixture so that  no equivalence 
necessari ly exists between similar  pa ramete r  sets for 
different  sized mixtures.  Monocul tures  can be regarded 
as a special  case of  the general model. 

A s imple model  of  in t ra-and in ter-component  com- 
pet i t ion is def ined which assumes that  plants do not 
interact  in their  compet i t ive  effects on others, a condi-  
t ion which is equivalent  to an absence of  second and 
higher  order  interactions in statistical analyses of  mix- 
tures of  any size. Simple  scaling tests involving the 
yields of  components  or whole mixtures of  different  
sizes can also be used to test the adequacy of  the 
model.  This compet i t ion  model  least to a l inear  rela- 
t ionship between the mean yield of  a mixture and the 
reciprocal  of  the number  of  components  it contains, 
and thus allows the predic t ion of  means and other 
statistical parameters  for mixtures of  one size from 
those o f  others. 

Key words: Compet i t ion  - Component  yields - Ter- 
t iary mixture  - F i rs t -order  model  

1 Introduction 

Concern about  the deleterious effects of  uniformity  in 
crops and par t icular ly  their  consequent vulnerabi l i ty  to 
disease epidemics  has led to a renewed interest in the 
culture of  mixtures  of  genotypes or  varieties, and 

exper imenta l  work has conf i rmed that  they are effec- 
tive in reducing the severity of  disease attacks in cereal 
crops (Browning and Frey  1969; Wolfe  and Barrett  
1981) with consequent  benefits for yield. Opin ion  as to 
the yield advantage  of  mixtures in the absence of  
disease is d iv ided,  but  most experiments  have shown 
mixtures  to give higher  average yields than monocul-  
tures, par t icular ly  when measured over a range of  
environments ,  and also to be more stable (Trenbath 
1974). 

Most work dealing with mixtures has been concerned with 
binary combinations and the comparison of all possible pair- 
wise combinations among n components in a design analogous 
to the diallel mating scheme familiar in quantitative genetics 
(Griffing 1956). Various methods have been suggested for the 
analysis of such designs (Williams 1960; McGilchrist 1965; 
Gallais 1970), generally applying a factorial model to estimate 
the average effects of components in all mixtures and the 
specific effects of particular combinations. The average effect 
of a component, defined as the mean value of all mixtures into 
which it enters, is of obvious utility as a selection criterion 
in a breeding programme aimed at the production of mixture 
components. The concept has been extended by Federer 
(1979) to mixtures of m components which allow general 
effects and specific effects of combinations of 2, 3 ... and up 
to m components to be defined. 

These definitions of general and specific component ef- 
fects for mixtures are closely paralleled by the general and 
specific effects of parents appropriate to the theory of syn- 
thetic variety development (Hill 1966; Wright 1974; Gallais 
and Wright 1980). In the cases of both synthetic varieties and 
mixtures, however, the definitions of general and specific 
effects relating to groups of a particular size bear no necessary 
relation to those for groups of a different size; the theory for 
different values of m is distinct. 

The purpose  of  the present paper  is to define a 
s imple model  for the descr ipt ion of  mixture  yields in 
terms o f  intra- and in ter -component  compet i t ion  ef- 
fects, to establish its relat ionship to operat ional  statist- 
ical models  with a view to developing methods  of  
testing its adequacy,  and to pursue its impl icat ions  for 
the predic t ion  o f  mixture  mean values and their  
variances.  
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2 Statistical Models and Their Analysis 

2.1 Basic Models 

2.1.1 Mixture Components  

The yield of  a component  of  a mixture of  two geno- 
types or varieties can be described by the factorial 
model 

Xi/j = U -t'- V i -I- aj + ( v  a)ij 

where xi/j is the half-plot yield of  the ith variety in 
binary mixture with the jth, u is the general mean of  all 
such component  yields, vi is the direct effect of  the ith 
component ,  aj the average associate effect of  the jth, 
and (v a)i j is the interaction of  these two effects. To 
this model must be added a further term to accom- 
modate  errors of  measurement. All effects have zero 
means and covariances, and variances equal to a2v, a 2 
and a(zv ~) respectively. 

Such a model could be used in the analysis of  a 
diallel set of  binary mixtures. It is easily and logically 
extended to cater for larger mixtures, although as the 
number  of  mixture constituents is increased, the num- 
ber of  orders of  interaction among them also increases, 
so that for mixtures of  size m, there are ml interactions. 
(The abbreviat ion mi will be used to denote ( m - i )  
throughout  the paper.) A general model for a com- 
ponent o f  a mixture of  arbitrary size m, including 
interactions up to the second order, is therefore 

xi/j...m = u + vi + Z aj + Z (va)ij + Z ~'~ (aa)jk 
j4=i j*i j#,i k>j 

+ 2 2 (v a a)ijk (1) 
j:l:i k>j 

where summation is over the 1 ... m components in the 
mixture. The new effects are (aa)jk the average inter- 
action o f  the jth and kth associates, and (vaa)ijk, its 
specific effect on the ith genotype. It is immediately 
appararent  that, because more terms are being in- 
cluded into the model and used to describe the yield of  
a smaller area o f  land (i.e. 1/m of  a plot), the param- 
eters in models used to describe different sized mix- 
tures are unrelated and in fact are of  different orders of  
magnitude. This factor will be more fully discussed 
later. A more complete notation would therefore in- 
clude m as a subscript to all parameters to emphasise 
this distinction. 

As in the case o f  binary mixtures, the parameters 
are independent and by definition have the following 
summat ion  properties: 

2 Vi = Z aj = Z (va)ij  = Z (va)ij  = 2 (aa)jk 
i j i4-j j4=i j+k 

= ~ (aa) jk= 0 ,  
k*j 

(vaa)ijk = ~ (vaa)ijk = ~ ( v a a ) i j k = 0 ,  
i#%k j:# i,k k eci,k 

where summation is over all n members of  the refer- 
ence population from which the components are drawn. 

2.1.2 Mixture Totals 

The conventional model for the analysis of  binary 
mixtures is that familiar from diallel analysis of  both 
mixtures and genetic crosses (Griffing 1956) where gi is 
the general effect of  the ith variety and dij the inter- 
action of  the ith and jth. The model is easily gener- 
alised to arbitrary sizes of  mixtures, so that, including 
only the first two out of  the ml possible orders of  
interaction. 

Yij . . . .  = / /  -t- Z gi + Z Z dij -I- Z Z Z tijk (2) 
i i j>i i j>i k>j 

with summation over m components and where tij k is 
the interaction of  varieties i, j and k. As before, error 
terms must be added to describe actual observed 
yields. The model parameters are constrained so that 

Z g i =  Z d i j =  E d i j =  Z t i jk= Z tijk 
i i+j je i  i*j,k jaci,k 

= Z tijk = 0 
k*i,j 

with the sequence of  subscripts for any d or t term 
being arbitrary, and summation is over the reference 
population of  size n. The parameters are defined so as 
to have zero means and covariances, and variances 
a 2, a 2, and a~. 

The parameters in the models for mixture com- 
ponents and totals are related so that: 

gi = v i + m l a i  

dij = (va)ij + (va)ji + m2(aa)ij 
tij k = (V a a)ijk -1- (V a a)jik + (V a a)kij. (3) 

The term (/~ + gi) is the average of  all possible 
mixtures of  size m with one common constituent, 
defined as the general mixture ability (g.m.a.) of  the 
ith variety or genotye. This differs from the definition 
given by Federer (1979) but is analogous with the 
genetic quantities general combining ability (g.c.a.) 
(Griffing 1956) and general varietal ability (Wright 
1974). 

2.2 Analyses of Variance 

The most comprehensive set of  data for the fitting of  
either of  models (1) or (2) and the testing of  the 
significance of the various effects will include all 
possible mixtures of  a given size among a set of  n 
varieties or genotypes. If  these are themselves a sample 
from a larger population about which information is 
required, then the observed mean squares can be used 
to derive estimates of  the population variances 

2 -- 2 2 -- 2 Og(m ) -  E (g(m)i), Ov(m)-- E (V(m)i) , etc. 



A. J. Wright: First-Order Model of Inter-Plant Competition 93 

Although the analysis of mixtures of  size m will allow 
the detection of interactions of up to m components, 
the presence (or absence) of a kth order interaction 
(say) in mixtures of  size m cannot be taken to neces- 
sarily imply the presence of a kth order interaction in 
mixtures of a different size because no correspondence 
between parameters defined for different sizes of mix- 
tures has been established. 

The form of the analysis to be applied will depend 
both on the size of mixture grown and on whether 
the components are separately measured. The growth 
and analysis of a 'diallel' set of nn~/2 binary combina- 
tions is a well established technique, and the analysis 
of mixture totals according to model (2) can be carr ied 
out by the method of Griffing (1956) for diallel sets of 
crosses, according to McGilchrist (1965), Chalbi (1967) 
and Gallais (1970). 

As in the case of diallel analysis, there is an obvious 
analogy between the analysis of all nnln2/6 tertiary 
(m = 3) mixtures among n varieties or their nnln2/2 
components and the 'triallel' analysis of three-way 
crosses given by Rawlings and Cockerham (1962a). 
Application of the full triallel analysis to data from 
tertiary mixture components gives orthogonal sums of 
squares due to 

(a) gi = vi + 2at 
( b )  dij = (v a) ij 4- (V a) j i  + ( a  a) i j  
(C) tijk = (V a a ) i j k  + (v  a a ) j i k  + ( v a  a)ki  j 
(d) hi = v i -  2ai 
(e) ( v a ) i j + ( v a ) j i - 2 ( a a ) i j  
(f) (v a ) i j -  (va)ji 
(g) heterogeneity among (vaa)ijk, (vaa)jik, and 

(vaa)kij. 

Thus, main effects are tested by items (a) and (d), first 
order interactions by (b), (e) and (f), and second order 
interactions by (c) and (g). The problem of correlated 
yields of components taken from the same plot can be 
most easily dealt with by the computation and applica- 
tion of separate replicate interactions for each item. 

A simple modification of this analysis would allow 
the analysis of mixture totals to give sums of squares 
due to items (a), (b) and (c). The nnlns/6 degrees of  
freedom for item (c) means that at least 6 varieties 
must be included to allow second order interactions to 
be detected. 

Following the detection of any particular source of varia- 
tion, its population variance can be estimated from the mean 
squares following the usual procedure of equaling them to 
their expectation. In principle, analyses for sets of larger 
mixtures could be devised, and for quaternary mixtures the 
'quadriallel' analysis of Rawlings and Cockerham (1962b) 
could probably be adapted. Some of the principles and 
constraints involved when analysing sets of mixtures of 
arbitrary size have been discussed by Federer (1979), although 
he used a somewhat different model from those examined 
here. 

3 Models  of  Competit ion and Their Properties 

The analyses and predictions described in the previous 
section are based on purely statistical models which 
deal with the performance of any mixture in terms of 
the statisticaI effects and interactions of its components 
without any attempt to translate or interpret these at 
the level of competition among plants belonging to the 
same or different components. A simple competition 
model will now be described which can be related to 
the foregoing statistical models and which allows the 
effects and statistics defined for various sizes of mix- 
tures to be integrated into a common framework which 
can lead to useful general predictions. 

3.1 Competition Model 

In a binary mixture of equal proportions of compo- 
nents A and B, half of the competitive influences 
experienced by the plants of one component are ex- 
pected to derive from A and half from B. Even if this is 
not true for any individual, it will be true on average 
for all the plants in an intimate mixture. If  these 
competitive influences are independent from plant to 
plant, that is, there are no pairwise or higher order 
interactions of plants with respect to the competitive 
influence they jointly exert on others, then a model 
including only these simple effects will provide an 
adequate description of all competitive phenomena oc- 
curring in mixtures involving any number of compo- 
nents. 

Thus, if xi/j is the yield of component i in binary 
association with component j (i.e. a half-plot yield) 
then 

x~ 4 = 114 (ci/i + ci/~) 

w h e r e  ci/j is the whole plot yield of component i in 
purely intercomponent competition (i.e. if each i plant 
could be surrounded totally by j plants). The whole- 
plot mixture yield is therefore 

Yi/j = Xi/j + Xjli = [ / 4  (Ci/~ + Ci/j + Cj/i + Cj/j) . 

This is essentially the model used by Hill (1974) and 
embodies the same assumptions as that of Schutz et al. 
(1968). It is easily expanded to mixtures of any size, so 
that 

m i i  Xi/j. . .  m = Z Ci/j/m', a n d  Yi/j . . . .  ~ ci/j/m~. (3)  
i i i 

The simplicity of this model immediately leads to 
some useful properties. Looking at the expectation of a 
component in terms of first order effects (3), one is an 
intra-component effect while the remaining mt are 
inter-component. Thus the average yield of all mix- 
tures of  a given size from a population is a linear 
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function of  the reciprocal  of  the number  of  compo- 
nents, the rate of  change of  yield depending on the 
difference between the average within and between 
component  effects. This suggests that when the first 
order  model  is appropr ia te ,  there is a basis for l inear 
pred ic t ion  of  mixtures of  one size from the yields of  
those o f  o ther  sizes; but  the presence of  second or 
higher  order  effects may introduce errors. 

3.2 The Relationship Between the Competition and 
Statistical Models 

The equivalence between the effects defined for the 
first order  compet i t ion  model  and those for either of 
the statistical models  (1) and (2) can be established as 
follows. If  c. is the mean of  the in t racomponent  effects 
ci/i over the whole of  the populat ion,  ci/. and c./i the 
mean  direct  and associate inter-component  effects for 
the ith genotype,  and c./. the grand mean of  all inter- 
component  effects, and putt ing Cij = Ci/j q- Cj/i and 
ci = ci/. + c./i, then 

U(m) = (c. + ml c./.)/m 2 
V(m)i  = ( (Ci / i  - -  C.) + ml ( c i / . -  c . / . ) ) / m  2 

a(m)i = (C. / i -  c./.)/m 2 
(va)(m)ij = (ci/j -- c i / . -  c./j + c./.)/m 2 
(aa)(m)ij = ( v a a )  (m) i i=  0, and 
P(m) = ( c .+  ml c./.)/m 
g(m)i = ( ( c i / i -  c.) + mj ( c i -  2ci/ i))/m 2 
d(m)ij = (cii - ci - cj + 2c./ .)/m 2 
t(m)ijk = 0.  (4) 

These relat ions hold for any size of  mixture for any 
popu la t ion  with respect to which the statistical and 
compe t i t ion  effects are defined. Thus the first-order 
compet i t ion  effects contr ibute only to main  effects and 
f i rs t -order  statistical interactions in models  (1) and (2), 
so that  the analysis of  variance of  a set of  mixtures 
with three or more components  will provide a test for 
the adequacy  of  the compet i t ion  model. It is also clear 
from (4) that  when statistical analysis reveals only 
main  effects (g, v or a) then this means that the inter- 
componen t  ci/j terms show no deviat ion from their  
average ci/. - c./j + c./.. 

3.3 Scaling Tests 

The analysis  of  variance provides a test for the exis- 
tence of  second and higher  orders of  compet i t ion from 
relat ively large structured arrangements of  mixtures of  
a par t i cu la r  size. An alternative approach  is the applica-  
t ion of  scaling tests to mixtures of  different sizes made  
up from the same components.  The simplest  such test 
uses ter t iary  and smal ler  combinat ions  so that  

A = 9Xi/jk -- 4(Xi/j Jr- Xi/k) + Yi, 

and when the components  cannot be separately mea- 
sured: 

B = 9yijk--  4(Yij + Yik+ Yjk) + Yi+ Yj+ Yk. 

S imi lar  tests using larger mixtures could be derived. 
These tests are distinct from those used by Hill and 
Sh imamoto  (1973) and have a different purpose. The 
significance of  the depar ture  of  the compound from 
zero can be tested by comparison with a s tandard error 
der ived from the variances of  the monocultures and 
mixtures of  each type around their  means. 

A disadvantage of this method is that only one combina- 
tion of components and hence only one deviation is tested at a 
time, and that, unlike the analyses of variance, it gives little 
indication of the overall importance of deviations from the 
model in a population of mixtures. 

3.4 Predictions of Mixture Yields" 

It has been shown that, in the absence of  second-order  
compet i t ion  effects, there is a l inear relat ionship be- 
tween the mean value of  a mixture and the reciprocal 
of  the number  of  components  it contains. The larger 
the mixture,  the higher  the propor t ion of  inter-compo- 
nent compet i t ion  occurring. Thus, s imple formulae can 
be developed which allow the predict ion of  the value 
of  a mixture from measurements  made on mixtures of  
two different  sizes (usually smaller) but  involving the 
same components.  Essentially, such a predict ion for- 
mula  is the scaling test cast in a different form. The 
general formula is 

Ym = (P (m - q) 5 p -  q (m - p) ~]q)/m (p - q) (5) 

where m > p > q, and yp and yq are the means of  all 
possible mixtures of  size p and q which can be made  
from the m components  contributing to Ym- 

The same principle can be used to predict  the 
per formance  of  a single component  of  any mixture: 

X m = (pZ(m - q) X p -  qZ(m - p) :~q)/m2 (p  -- q) .  

This relat ionship allows some general predict ions 
about  the expected performance of  constituents of  
different  types; a weak compet i tor  which, on average, 
contr ibutes less to binary mixture yields than to its own 
monocul ture  will be even weaker in larger mixtures, 
the reverse trend applying to a strong competitor.  

The above formulae can be used to generate a whole 
hierarchy of  predict ions when a diallel set of  b inary  
mixtures and monocultures is grown. This is most 
easily done by making direct estimates of  the ci/j ef- 
fects, using the relat ion 

Ci/j = 4 X i / j  - -  Yi 

where the components  are separately measured,  or 

cij = (ci/j + cj/i) = 4 y i j - ( Y i  + Yj) 
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where they are not. The expected mean of  any mixture 
of  any size is then found as the mean of  all m 2 c effects 
contr ibut ing to it. 

The l inear  re la t ionship between mean and the 
reciprocal  o f  mixture size extends to the statistical 
effects themselves,  as is apparen t  in (5). Thus the 
average effects with respect to mixtures of  one size can 
be predic ted  from those of  another  as 

g (m) i  = (p2(m - q) g ( P ) i -  q2( m - P) g ( q ) i ) / m 2 ( p -  q) - 

S imi lar  expressions could be developed for higher  
o rder  effects. 

4 Variances 

4.1 The Statistical Models 

The expected variances o f  the yield totals of  mixtures 
of  size m made  up by random or systematic association 
o f  components  from a large populat ion,  ignoring con- 
t r ibut ions from error, can be derived directly from (2) 
a s  

I a ~ +  1/6 mml m2 0-2 + ay2 = m 0-g2 + 5 mml  .. .  

and so on up to the ruth order. A subscript  (m) to these 
statistics is impl ied  throughout ,  as it is to the following 
formulae.  Using model  (1) and noting the relations (3), 
the mixture  var iance can be further expanded,  so that, 
including interactions up to the second order  

@ =  m 0 - ~ + 2 m m ,  0-~.~+ m m ~ +  minx 0-~ 

+ -~mmj l  m ~ a , 2 a + 2 m m l n a 2 0 - ,  . . . .  

1 + 7 m m l  m2 o'2aa �9 

This  form illustrates the contributions of  the co- 
variances of  v and a (a~.~) and of  v a  and a a  (cr,~.~), 
due to the correlated dis t r ibut ion o f  these effects in 
mixture  totals. As expected, a a  and v a  terms only 
contr ibute  when m exceeds 2. 

The overall  variance of  all mixture components,  
from (1), is found to be 

1 cr,2a + -~ ml m20"vaa , 0-~ = Cr~ + ml 0-~ + m, 0-~a + '~  ml m2 i 2 

and this is free from all covariances. The average 
variance of  components  within mixtures,  that  is a round 
their  respective mixture  means, again to the second 
order,  can now be der ived from the above results as 

~2, = 0-~_ o~/m ~ 

= m l / m  (0"2v -I - 0 -2 - -  2 cry., + m ,  O'v2a -I - m 2  0-g~ 

, 0-~.~) -- 2m2 0-va.aa + "~ ml  m2 

where x' is the within mixture  deviat ion of  a compo-  
nent yield. This  var iance is affected by the covariances 
a~.~,, and 0-~,.,~, but  in the opposi te  direct ion from the 
variance of  mixture  totals. If, as expected, the direct  

and associate (v and a) effects of  a popula t ion  of  
genotypes or  variet ies are negatively correlated,  then 
their  covariance will reduce the variance among mix- 
tures and increase that  within them. 

This formulation of the variances of mixture totals and 
components can be used to derive the expectations of the 
mean squares estimable from the analysis of a balanced set of 
mixtures. However, although of value for descriptive pur- 
poses, these results have little predictive values for mixtures of 
different sizes because the model parameters bear an unknown 
relationship. 

4.2 Competition Model 

As in the case of  mixture and component  mean values, 
the compet i t ion  model ,  where appl icable ,  has useful 
predic t ive  proper t ies  across mixtures of  different  sizes. 
Wri t ing var ci/i, var  ci, var ci/., and var c./i for the 
popula t ion  variances of  the various effects a l ready 
def ined around their  means, cov Ci/i Ci, COV Ci/i e i / . ,  c o v  

Ci/i c . / i ,  and cov ci/. c./i as their  covariances, and var ci/j 
as the residual var iance among the ci/j terms, then, 
using (4) 

0-~ ~m~ = 1/m4(var ci/i + 2 ml cov ci/i ci + m~ var ci) 
0-~(m) = 4/m4(  T M  ci/j) 
O'v(m)~ = 1 /m 4 (var Ci/i "]- 2 m l c o v  c i / i  c i / ,  -I- v a r  ci/.) 
0-~(m) = l /m4(  var c./i) 

9 
O'v(m)a(m ) = 1/m4(cov Ci/i C./i -}- m I c o Y  e l / '  c / i )  

2 = 1/m 4 (var ci/j), other  statistics being zero. ~ v a ( m )  

Subst i tu t ing these relations into the foregoing statis- 
tical formulae,  

0 - ~ ( m ) =  l / m 3 (  var Ci/i -]- 2mz cov el / i  C i -I- m~ var ci 
+ m l var ci/j), 

O" ~ (m) = 1/m4(var  Ci/i -I- 2ml  COV e l / i  e l / .  -'1- m~ var ci/. 
+ m~ var c./i + m~ var ci/j), 

and 

cr • = mj/mS(va r  Ci/i -'k 2ml  coy Ci/i e l / .  

- -  2COY Ci/i C./i - -  2ml  cov ci/. c./i + m~ var ci/. 
+ var c./i + m~ var ci/j) 

= ml/mS(var(ci/i  + ml c i / . -  c./i) + ml var ci/j) �9 

Unl ike  those der ived from the statistical model ,  these 
expressions are  complete ly  explicit  with respect to 
mixture  size (m), as terms like var ci/i are constants. All 
variances are seen to decrease with increasing m, but  at 
rates dependent  on the proper t ies  of  the compet i t ion  
effects. The  contr ibut ion  of  main  effects to the var iance 
within mixtures  is a function simply o f  the variance of  
( v - a )  which leads to the condensed form for the 
compet i t ion  model  given above. 

5 Discussion 

The statistical effects and interactions in terms of  
which the means  and variances of  mixtures of  compo-  
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nents have been expressed are analogous with those 
used in the genetic theory of  synthetic varieties (Gallais 
and Wright  1980), and like these are distinct for each 
size of  mixture. The first-order competition model, on 
the other hand, by separating mixture yields into 
portions arising under intra- and inter-component com- 
petition, fills the same underlying causative role as that 
occupied in the context of  synthetics by a Mendelian 
model of  inheritance which is restricted to non-inter- 
acting genes. The scaling test is a familiar genetic 
device for the detection of  epistasis (Mather and Jinks 
1972), but is used here in conjunction with analysis of  
variance to detect second and higher order competitive 
interactions. When these are shown to be absent, then 
the means and variances of  mixture components can be 
related to mixture size and the distinct models unified 
in a common  theory. 

With first-order competition associated with statis- 
tical models showing only main effects or main effects 
and two component  interactions, all means and effects 
are linearly related to the reciprocal of  mixture size 
( l /m) ,  so that any average advantage of  mixtures over 
monocultures will increase with mixture size. It should 
be noted that the presence or absence of  first-order 
statistical interactions does not necessarily relate to the 
presence or absence of  mixture advantage. Sampling 
theory would suggest that the variance among large 
mixtures should be less than that among smaller 
mixtures or monocultures, and if the components 
behaved independently in mixtures, then the variance 
would be a function of  1/m. Even with first order 
competi t ion however, the relationship can vary be- 
tween extremes of  1/m and 1/m 3, a fact which could 
explain the five-fold difference in variances among 
monocultures and binary mixtures of  oats reported by 
Shorter and Frey (1979). Whatever the exact relation- 
ship, because the mean of  mixtures increases with m 
while their variance decreases, it is difficult to predict 
the size of  the single best mixture out of  all those 
possible. 

Covariances among mixtures of  different sizes can 
be formulated in the same way as the variances given 
here, and with first-order competition can also be 
expressed in terms of  mixture size. Some predictions of  
the relative efficiences of  different types of  component 
selection formulated in terms of  these covariances and 
variances will be given in a subsequent paper. 
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